Exercise 7

Verify the given linear approximation at $a=0$. Then determine the values of x for which the linear approximation is accurate to within 0.1.

$$
\ln (1+x) \approx x
$$

Solution

Plugging in $x=0$ to the function yields $\ln (1+0)=0$, so $(0,0)$ is the point on the curve that the tangent line goes through. Taking the derivative of the function yields

$$
\frac{d}{d x} \ln (1+x)=\frac{1}{1+x} \cdot \frac{d}{d x}(1+x)=\frac{1}{1+x} \cdot 1=\frac{1}{1+x} .
$$

Set $x=0$ to get the slope of the tangent line.

$$
\left.\frac{d}{d x} \ln (1+x)\right|_{x=0}=\frac{1}{1+0}=1
$$

Use the point-slope formula to get the equation of this line.

$$
\begin{gathered}
y-0=1(x-0) \\
y=x
\end{gathered}
$$

As a result, the linearization to $\ln (1+x)$ at 0 is

$$
L(x)=x .
$$

Now find the values of x for which the linear approximation is accurate to within 0.1.

$$
\begin{gathered}
|\ln (1+x)-x|<0.1 \\
|x-\ln (1+x)|<0.1 \\
-0.1<x-\ln (1+x)<0.1 \\
-0.1+\ln (1+x)<x<0.1+\ln (1+x)
\end{gathered}
$$

Plot each of these functions versus x.

The linear approximation stays between the curves for

$$
-0.383183<x<0.516221 .
$$

This is the interval that the linear approximation is accurate to within 0.1.

